例:现有21瓶红牛分给甲、乙、丙、丁、戊五个同学,问:
(1)每个同学至少分得一瓶,甲最多分得几瓶红牛?
要让甲最多,总和一定的情况下,只需要让乙丙丁戊尽可能小即可,即乙丙丁戊每人一瓶,剩下17瓶全是甲的。
甲 乙 丙 丁 戊
17 ← 1 1 1 1
(2)每个同学至少分一瓶,且分得的红牛数各不相同,甲同学最多分得几瓶?
要让甲最多,总和一定的情况下,只需要让乙丙丁戊尽可能小即可,即乙丙丁戊每人各为1、2、3、4,剩下11瓶全是甲的。
甲 乙 丙 丁 戊
11 ← 4 3 2 1
(3)每个同学至少分一瓶,且分得的红牛数各不相同,那么分得红牛最多的甲同学最少分得几瓶?
要让甲最小,总和一定的情况下,只需要让乙丙丁戊尽可能大即可,但是怎么大都不可能超过甲,不然不满足题干了,所以假定甲为x,则21瓶红牛存在如下的分配情况:
甲 乙 丙 丁 戊
x + (x-1) + (x-2) + (x-3) + (x-4) =21,求得x=6…1,多余的一瓶红牛只能分给甲了。所以甲最少也得分7瓶红牛。
(4)每个同学至少分一瓶,且分得的红牛数各不相同,那么分得红牛最少的戊同学最多分得几瓶?
要让戊最大,总和一定的情况下,只需要让甲乙丙丁尽可能小即可,但是怎么小都不可能比戊还小,不然不满足题干了,则21瓶红牛存在如下的分配情况:
甲 乙 丙 丁 戊
(x+4)+ (x+3) + (x+2) + (x+1) + x=21,求得x=2…1,多余的一瓶红牛只能分给甲了。所以戊最多分2瓶红牛。
这个就是我们常见的和定求极值问题,通过这些例子大家可以看出,这类题的解题遵循两个步骤:1、先确定求的是哪个量;2、求此量的最大值就让其他量尽可能的小;求此量的最小值就让其他量尽可能大。(在题干要求下让其他量变大或变小)
解题思路就先学到这里,接下来我们来练习一道真题。
【真题演练】某连锁企业在10个城市共有100家专卖店,每个城市的专卖店数量都不同。如果专卖店数量排名第5多的城市有12家专卖店,那么卖店数量排名最后的城市,最多有几家专卖店?
A.2 B.3 C.4 D.5
【答案】C
【中公解析】和定最值问题,问排名最后的最多,即求最大值,则让其他城市在题干前提下尽可能少即可。按照由小到大的顺序排列十个城市,因为题干要求第5多的城市有12家,所以第四多至第一多最少分别为13、14、15、16。在此前提下,假定第十个城市专卖店数量为x,则100家专卖店的安排情况为:
一 二 三 四 五 六 七 八 九 十
16 15 14 13 12 x+4 x+3 x+2 x+1 x
所以16+15+14+13+12+(x+4)+(x+3)+(x+2)+(x+1)+x=100,解得x=4.所以最少的城市最多有4家店。
更多国家公务员考试信息请关注莆田人事局